Dynamic interfacial tension at the oil/surfactant-water interface.

نویسندگان

  • Guifeng Li
  • Shishir Prasad
  • Ali Dhinojwala
چکیده

We have used dynamic interfacial tension measurements to understand the structure of the ordered monolayer at the hexadecane/water interface induced by the presence of surfactant molecules. No abrupt changes in the interfacial tension (gamma) are observed during the expansion and contraction cycle below the interfacial ordering temperature (Ti) as observed for alkanes in contact with air. The lack of an abrupt change in gamma and the magnitude of this change during the expansion process indicate that the ordered phase may not be crystalline. The change in the interfacial tension is due to an increase in contact between water and hexadecane molecules and the disordering of the interfacial ordered layer. At low surfactant concentrations, the recovery of the interfacial tension is slower below Ti, suggesting that there is a critical surfactant concentration necessary to nucleate an ordered phase at the interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics study of nanoparticles and non-ionic surfactant at an oil– water interface†

Nanoparticles (NPs) and surfactants can spontaneously concentrate at the interface between two immiscible liquids, such as oil and water. Systems of high oil–water interfacial area, such as emulsions, are the basis of many industries and consumer products. Although NPs and surfactants are currently incorporated into many of these applications, their mutual interfacial behavior is not completely...

متن کامل

Influence of Surfactant Type, Surfactant Concentration, and Salinity on Interfacial Tension of a Brine/Live Oil/Surfactant Fluid System: A Case Study of Iranian Asmari Oil Reservoir

The chemical surfactant flooding can mobilize the trapped oil by lowering the interfacial tension between oil and brine and in some cases altering the reservoir rock wettability. In this work, the effect of surfactants on oil/brine interfacial tension was experimentally investigated. First, the effect of surfactants concentration was surveyed. Afterwards, the effect of salinity on surfactant be...

متن کامل

An Experimental Investigation of Water Effects on Asphaltene Surface Behavior through Interfacial Tension Measurements

As a physiochemical property, asphaltenes are known to be one the most surface active compounds in crude oil. Due to such property, their behavior is most probably influenced by fluid-fluid interactions at the contact surface (interface). Potentially and naturally, in most cases, water is in contact with crude oil and is co-produced with it as well. Considering that asphaltene molecules are pol...

متن کامل

Dispersion of oil into water using lecithin-Tween 80 blends: The role of spontaneous emulsification.

Lecithin-rich mixtures of the nontoxic surfactants lecithin and Tween 80 are effective marine oil spill dispersants, but produce much higher oil-water interfacial tension than other, comparably effective dispersants. This suggests interfacial phenomena other than interfacial tension influence lecithin-Tween 80 dispersants' effectiveness. The interface between seawater and dispersant-crude oil m...

متن کامل

Effect of surfactant structure on interfacial properties

– We study surfactants at the oil/water interface using Dissipative Particle Dynamics simulations at constant μsurfPT . The interfacial tension depends on the surfactant branching in a subtle way. For a given interfacial concentration, a double-tail surfactant is more efficient than its single-tail isomer only if the oil-head repulsion is sufficiently strong. For a given concentration in the bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 23 20  شماره 

صفحات  -

تاریخ انتشار 2007